

FUNGAL BIOAUGMENTATION PROCESS SPECIFIC TO EACH ACTIVATED SLUDGE

Case study Speciality chemistry

GOAL: To abate more recalcitrant COD: complex nitrogenous molecules such as hexamine and DMEA.

TECHNICAL DATA:

1st high-load stage comprised of two stepped basins of 7500 and 3000 m₃, 2nd 3000 m₃ nitrification stage, 20 to 50 T COD/day

RESULTS:

DMEA and hexamine elimination is increased by a factor of 1.7: the plant's upstream production capacity is thus increased.

N-NTK release is reduced by 29%.

We have taken recalcitrant COD abatement even further!

PILOT BATCH TESTING OF ANTI-DMEA AND/OR ANTI-HEXAMINE MICRO-ORGANISMS

We have more than 500 strains in our FUNGAL LIBRARY

PRINCIPLE

Tests conducted on the customer's premises, in pilot settings reproducing the conditions of the waste water treatment plant (sludge age, effluent composition, temperature, etc.)

THE VARIOUS MICRO-ORGANISMS
TESTED ARE ADDED TO THE TRIED AND
TESTED FUNGAL COCKTAIL

PILOT TESTS

The first two tests were conducted with the initial fungal cocktail supplemented with a yeast: kluyveromyces.

The results are compared to a control treated with the fungal cocktail alone.

Pilot test results

After 13 days: the % COD abatement is of:

39% for the control

52% for test 1 with the supplemented cocktail

51% for test 2 with the supplemented cocktail

THIS IS THE FIRST TIME THE PLANT HAS OBTAINED SUCH EXCELLENT RESULTS

A full-scale test, spanning several months, was conducted with the new KLUYVEROMYCES-supplemented cocktail.